
Journal of Applied Sciences, Information and Computing (JASIC) 2023

20

Journal of Applied Sciences, Information and Computing

Volume 4, Issue 2, November 2023

© School of Mathematics and Computing, Kampala International University

 ISSN: 1813-3509 https://doi.org/10.59568/JASIC-2023-4-2-03

A REVIEW OF CLUSTER UNDER-SAMPLING IN UNBALANCED DATASET AS A

METHODS FOR IMPROVING SOFTWARE DEFECT PREDICTION

Abdulhamid Sani1, V. S. Manjula2, Musa Ahmed Zayyad3

1,Department of computer science, School of Mathematics and Computing, Kampala

International University Uganda; abdulhamidsanihja@gmail.com;

2Corresponding Author, Professor, Department of Computer Science, Kampala International

University, Kampala, Uganda, East Africa, manjusunil.vs@gmail.com,

Orcid ID: (0000-0003-0308-3289)
3Department of Information Technology, School of Mathematics and Computing, Kampala

International University Uganda; zayyad.musa@kiu.ac.ug

Abstract

In many real-world machine learning applications, including software defect prediction, detecting fraud,

detection of network intrusion and penetration, managing risk, and medical dataset, class imbalance is an

inherent issue. It happens when there aren't many instances of a certain class mostly the class the procedure

is meant to identify because the occurrence the class reflects is rare. The considerable priority placed on

correctly classifying the relatively minority instances—which incur a higher cost if incorrectly categorized

than the majority instances—is a major driving force for class imbalance learning. Supervised models are

often designed to maximize the overall classification accuracy; however, because minority examples are

rare in the training data, they typically misclassify minority instances. Training a model is facilitated by

balancing the dataset since it keeps the model from becoming biased in favor of one class. Put another way,

just because the model has more data, it won't automatically favor the majority class. One method of

reducing the issue of class imbalance before training classification models is data sampling; however, the

majority of the methods now in use introduce additional issues during the sampling process and frequently

overlook other concerns related to the quality of the data. Therefore, the goal of this work is to create an

effective sampling algorithm that, by employing a straightforward logical framework, enhances the

performance of classification algorithms. By providing a thorough literature on class imbalance while

developing and putting into practice a novel Cluster Under Sampling Technique (CUST), this research

advances both academia and industry. It has been demonstrated that CUST greatly enhances the

performance of popular classification techniques like C 4.5 decision tree and One Rule when learning from

imbalance datasets.

mailto:abdulhamidsanihja@gmail.com
mailto:manjusunil.vs@gmail.com
mailto:zayyad.musa@kiu.ac.ug

Journal of Applied Sciences, Information and Computing (JASIC) 2023

21

Keywords: Algorithms, Decision Tree, CUST, Data sampling, One Rule, Software Defect Prediction,

Unbalanced Dataset.

1. INTRODUCTION

In supervised learning tasks, classification is

predicting the category or class of unseen data

by using labelled categorical data as a source of

knowledge (Demidova & Klyueva, 2018). The

issue of class imbalance is one of the primary

difficulties in supervised categorization. The

condition when a dataset has a higher

representation of one class than another is

referred to as this problem. The negative class

(majority class) and the positive class (minority

class) are the two main groupings or classes

into which the data in this issue domain is

divided. There are far more examples in the

majority class than in the minority class. In the

fields of machine learning, classification is a

well-researched technique (Li et al.,, 2014;

Challagulla, 2015; Malhotra, 2012).

Numerous real-world applications of machine

learning algorithms include the detection of

faults (Han & Wang, 2016), the detection of

email spam (Zeng & Wang, 2015), the

prediction of cancer (Schaefer, 2015 & Reza,

2019), the detection of credit card fraud

(Subudhi, 2018; Bauder, 2018; Mohammed,

2018; Melo-Acosta, 2017), intrusion detection

(Rodda, & Erothi, 2022), and many more.

Unfortunately, the datasets used in these real-

world applications are typically unbalanced,

which means that most machine learning

techniques on these datasets yield unfavorable

results. (Ofek, Rokach, Stern, & Shabtai,

(2022)); Sowah, Agebure, Godfrey, Koumadi,

& Fiawoo, (2020). As a result, several

classification algorithms predict the majority

class with high accuracy while predicting the

minority class with comparatively low

accuracy (Gao, Hong, Chen, Harris, & Khalaf,

2021). However, the majority class finds the

minority class more appealing because its

instances are significantly fewer than those of

the majority class (Gao, Hong, Chen, Harris, &

Khalaf, 2021). Therefore, having balanced

prediction accuracy for both the negative and

positive classes’ occurrences is of study

interest.

It is impossible to ignore the problem of class

imbalance in real-world datasets and how it

affects machine learning and statistical

methods. This research consider some

outstanding data level methods to imbalance

learning as well as new sampling techniques

that take other data quality issues like noise or

inconsistent instances and outliers into

consideration when sampling in order to

improve the performance and reliability of

statistical and machine learning algorithms

when learning from imbalance datasets. This

study presents a novel Hybrid Cluster-Based

Sampling Technique (HCBST) that could be

applied to enhance classification algorithms'

performance when they are learning from

unbalanced datasets. The efficacy of data level

approaches serves as the technique's driving

force.

1.1 Objectives of the Study

1. To develop an effective method for under

sampling instances of the majority class in

datasets that are imbalanced.

2. To put the method into practice using Python

3. To test the method with One R Classification

Algorithm and C4.5 Decision Tree

4. To appraise and evaluate the suggested

technique's effectiveness by contrasting its

results with those of previously established

sampling approaches

1.2 Research Questions

1. In imbalanced datasets, how can we develop

an effective method for under sampling

instances of the dominant class?

2. How can the Python language be used to

implement the technique?

3. How can the C4.5 Decision Tree and One R

Classification algorithms be used to test the

method?

4. How can the effectiveness of the suggested

technique be determined by contrasting its

results with those of sampling procedures that

are currently in use?

2. METHODOLOGY

Journal of Applied Sciences, Information and Computing (JASIC) 2023

22

The methodologies employed in the study are

covered in this section, together with the

datasets, sampling strategies, tools, system

specs, performance measures, and

experimental techniques.

2.1 Datasets

The experimental setup would make use of

eleven datasets, five of which came from the

University of California Irvine Repository

(Frank, 2017) and six of which came from the

National Aeronautics and Space

Administration (NASA) Metric Data Program

(MDP) (Gray, Bowes, Davey, Sun, &

Christianson, 2011). The datasets used from

both repositories are listed in Table 1. The

NASA MDP datasets are made up of

information from several software projects that

NASA has worked on. The original

information was retrieved from a backup by

(Tantithamthavorn, 2016). All 13 NASA

Software defect datasets were subjected to a

rigorous data purification process that was fully

detailed by Gray (2011) in 2011. As a

consequence, each dataset contained between 6

and 90% of its original data. The datasets from

Shepperd (2013) have been cleansed and will

be utilized as backups in this study. Shepperd

(2013) sought to determine the extent to which

research analyses that have been published and

based on the NASA Software Defect Datasets

are relatively informative (Shepperd, 2013).

But Petrić (2016) found further guidelines for

eliminating problematic data that Shepperd

(2013) had missed. By following these

guidelines, it was possible to determine which

two of the 13 NASA Software Defects

datasets—JM1 and MC2—were the most

troublesome (Petrić, 2016). The machine

learning community uses the UCI Repository,

a collection of databases, domain theories, and

data generators, for the empirical investigation

of machine learning algorithms. The multi-

class datasets from the UCI Repository would

be transformed into binary classification issues

for this investigation. A summary of the

datasets and their class distributions is

presented in Table 1. The study will utilize

NASA Software Defects and UCI datasets as

data samples due to their public availability and

widespread usage by fellow academics

conducting related research (Petrić, 2016).

 Table 1. Summary of Datasets

Dataset Attributes Cumulative

Instances

Minority

Class

Majority

class

instances

Ratio of

Imbalance

NASA

Datasets

PC1 39 761 63 699 11.54

PC2 39 1586 18 1568 98.16

MW1 37 265 28 237 8.78

MC2 41 128 45 83 1.89

CM1 39 345 42 302 7.19

KC3 42 201 36 164 4.56

UCI

Datasets

Abalone, 8 730 41 688 15.40

Abalone. 9 4177 32 4145 129.5

Ecoli. 7 335 19 315 1.80

Journal of Applied Sciences, Information and Computing (JASIC) 2023

23

Glass, 11 215 18 198 11.69

Yeast. 10 265 21 245 12.30

2.2 Methods of Sampling:

In this study, the suggested sample approach

will be evaluated for effectiveness against

eight (8) other data sampling methods. The

techniques include one-sided selection,

cluster under sampling technique, adaptive

synthetic sampling the Synthetic Minority

Oversampling Technique, random under

sampling, random oversampling, and under-

Sampling based on Clustering. Python would

be used for his study to implement the CLU

Ster-based hybrid sampling approach, under-

sampling based on clustering, and the Cluster

Under sampling Technique. Utilizing Scikit-

learn (Pedregosa, 2011), the remaining

conventional sample methods would be

applied.

2.3 Tools Employed

Scikit-learn, a Python machine learning

package that completely integrates a variety

of machine learning techniques, and the

Python Environment running on 64-bit

Windows_10 are the tools utilized in this

work (Pedregosa, 2011). Compared to

equivalent C or C++ programs, Python is a

very basic interpretative language that makes

it possible to write more understandable and

generally much shorter code (Van, Voor,

Rossum, 1995). Among the scikit-learn

classification techniques used were K-

Nearest Neighbors, Support Vector

Machines, Random Forest, Multilayer

Perceptron, Adaboost, Naïve Bayes, and

Quadratic Discriminant Analysis. The default

parameters of the classifiers were used in this

experiment.

2.4 System Requirements

The following describes the platform's

system definition, which served as the

foundation for developing the suggested

technique:

 Table 2. System specifications

Operating System Windows_10

Architecture of the system 64bits

Random Access Memory 32GB

Central Processing Unit Core i7

No of Core 4(four)

Threads 8(eight)

Caches 6MB

Frequency 2.8GHz

Turbo 3.8GHz

Storage Capacity 256GB M2 SATA III SSD and 2 TB SATA

HDD

The primary performance metrics to be

employed in assessing the classifiers' efficacy

are the Matthews Correlation Coefficient

(MCC), Geometric Mean (G-Mean), and

Area Under the Receiver-operating-

Journal of Applied Sciences, Information and Computing (JASIC) 2023

24

characteristic Curve (AUC). The scikit-learn

classifiers would have routines for

calculating these performance measures.

2.5 Experimentation Approach

Prior to training the classification models, the

training data would be sampled using eight

different sampling procedures. Using

stratification and a random seed, each dataset

would first be divided into training and

testing to provide an accurate out-of-sample

performance evaluation. By using

stratification, it would be possible to split the

data so that each of the resultant datasets had

an equal representation of the original

dataset. The results would be easily

repeatable thanks to the random seed.

On the training dataset, stratified tenfold

cross-validation would also be done. Every

time a validation is performed on the training

dataset, the held-out data is used to estimate

the validation performance. The results are

then recorded as validation performance for

further examination, and the completed

model is employed to evaluate the test dataset

and document the testing results. After the

tenfold cross-validation is complete, the

results would be averaged and documented

for both the testing and validation

performances. The same process would be

carried out ten times, with a different random

seed value each time, to further decrease

biases that might

have been introduced during the stratification

phase in the division of the training and

testing data or the cross-validation process.

The validation and testing results for each

dataset are averaged to determine the overall

performance of the classifier under

consideration. The testing findings would

dictate the overall performance of the model.

3. FINDINGS AND INTERPRETATION

The study's design for the Hybrid Cluster-

Base Sampling Technique (HCBST) and the

equations employed to meet the

predetermined study objectives are included

in the results and analysis section that

follows.

3.1 Designed of hybrid cluster-based

sampling approach

The HCBST method outperforms existing

sampling strategies using the k-means

algorithm in terms of computational time

while also boosting the overall effectiveness

of well-known methods for machine learning.

The HCBST approach consists of two steps:

the oversampling stage, in which synthetic

minority class instances are created using

SMOTE (Chawla, Bowyer, Hall, &

Kegelmeyer, 2022).

The second step, referred to as under

sampling, is based on the notion of using

clustering to identify outliers in data

(Kaufman & Rousseeuw, 1990; Rocke &

Woodruff, 1996). The HCBST design

allowed for the flexible use of various sample

settings for the under sampling and

oversampling procedures. Thus, the sampling

parameters would be estimated before the

sample process. Figure 3.2 provides a

summary of the HCBST design. The

oversampling procedure, derived from

SNOCC, is a method for oversampling

minority class instances (Zheng, Cai, & Li,

Journal of Applied Sciences, Information and Computing (JASIC) 2023

25

2015). Unlike SMOTE, where the synthetic

samples are placed on the line segment

between the seed samples, SNOCC uses a

technique to construct synthetic samples

inside the region bounded by the line

segments between the seed samples. SNOCC

calculates the distances to the k-nearest

neighbors, their mean mi, and their sigma,

which is equal to the average of mi plus the

standard deviation from equation (2.2), using

seed samples from the minority class as an

input.

Figure 1. An overview of the HCBST design

Next, a seed sample (s1) and its two nearest

neighbors (s2 and s2)—referred to as sigma

nearest neighbors—are chosen at random by

the algorithm so that their distances are smaller

than sigma (Zheng, Cai, & Li, 2015). Then, it

creates a vector in three dimensions (b1, b2,

b3) so tha b1+ b2 + b3 =1 (eq. 1)

At last, the new synthetic sample is produced

by using the equation:

 S = b1 s1 + b2 s2 + b3 s3 =1 (eq. 2)

The process would be continued until the

required number of minority samples were

obtained. In 2015, Zheng, Cai, and Li shown

by experiments that this approach yields

synthetic samples that, in comparison to

SMOTE, are more representative of the actual

minority samples. However, the presence of

majority samples is not taken into account in

the distribution space of the seed samples that

were used to produce the synthetic samples. To

address this issue, HCBST would use a

selection criterion that eliminates synthetic

samples that are more likely to overlap with

Journal of Applied Sciences, Information and Computing (JASIC) 2023

26

majority samples. To apply the HCBST

method, which oversamples, the researcher

needs to provide three parameters: r0, bm, and

0s. The number of sampled minority instances

and sampled majority instances should be

matched, as shown by Bm and 0s, respectively.

to return only synthetic samples or both

original and synthetic samples. The number of

minority samples needed to produce N0, which

is provided by the following equation, would

be ascertained using the value r0

N0 = Nm (r0 -1) (eq. 3)

where Nm is the initial minority sample

number.

If r0 is set to 1, oversampling won't happen,

and if r0 is set to 2, sampled minority cases will

almost quadruple the number of original

minority samples. In line with SNOCC,

HCBST generates a synthetic sample after

determining the required quantity of minority

samples. The distance to the closest majority

sample is calculated for each of the sigma

neighbors, s2 and s2, and the average of these

distances is determined as s. Lastly, it finds

the distance, dn, between the new synthetic

sample and the closest majority sample. If dn's,

a new seed sample, S1, would be used to

resume the process after discarding the new

synthetic sample. The process would be

repeated until the number of acceptable

synthetic samples was equal to zero.

During the second stage of the sampling

process, a CUST approach would be used to

under sample instances of the majority class.

CUST groups the remaining samples into k-

clusters after removing inconsistent samples

using a method based on Tomek connections.

It removes duplicates by selecting majority

samples for each cluster according to a preset

ratio. Like SNOCC, CUST does not consider

the local closeness of the nearby class

instances. Therefore, it may be decided to

select majority cases that coincide with

minority situations. To overcome this issue,

HCBST uses a technique similar to the

oversampling process to filter out majority

instances that are particularly likely to overlap

with examples of minority classes. An

overview of the oversampling process is

shown in Figure 3.

Journal of Applied Sciences, Information and Computing (JASIC) 2023

27

Figure 2. Oversampling Process

In order for the HCBST method to carry out

the under sampling process, the experimenter

needs to provide the parameters ru, pm, km,

and km. The ratio of majority samples to

original minority samples after under

sampling is known as Ru. The number of

clusters to use from the majority samples is

indicated by km, the number of minority

neighbors to search for is indicated by km,

and the fraction of majority samples to

discard is indicated by pm.

In the first stage of the under sampling

process, the algorithm would select the mode

of under sampling by selecting or rejecting

samples from the majority samples according

to the criteria set by the researcher. When the

parameter pm is set, the algorithm is told to

under sample by rejecting majority

occurrences. In all other circumstances, the

option ru will be used to select samples from

the majority of cases. If pm was set to 0.1,

10% of the majority samples would be

removed, and the parameter ru would be

ignored. The majority samples would be

clustered into km clusters by the program

using the means technique when the under

sampling mode was identified. In the event

that pm is not specified for every cluster, the

algorithm will proceed using CUST. To

determine the required number of samples to

be selected from each cluster, utilize equation

(3.6).

 MI Maji = ru x x MCi; 1≤I ≤ km,

MA ≠0 (eq. 4)

Where MCi is the number of majority class

samples in the ith cluster, MI is the total a few

of sporadic instances, MA is the total number

of majority instances, and Maji is the number

of majority instances to select from cluster I.

Subsequently, a random instance would be

selected from the cluster, with copies of

previously selected instances being rejected.

Journal of Applied Sciences, Information and Computing (JASIC) 2023

28

Unlike CUST, HCBST takes into account the

local proximity of minority circumstances. A

minority instance, Sci, is removed from the

cluster if any of its kn nearest neighbors are

minority instances. This process is done after

choosing an instance, Sci, from the cluster. If

not, it would add to the selected samples. The

procedure would be repeated until the

required number of instances from each

cluster are acquired. The selected samples

from each cluster and the minority samples

would be combined to generate the new

training set. On the other hand, if pm is set,

the number of majority samples that need to

be removed from each cluster is decided by;

Maji = Pm x MA; 1 ≤I ≤ km

(eq. 5)

A random instance named Sci would be

selected from the cluster, and its kn nearest

neighbors would be looked for. Sci would be

rejected if any of the kn -1 neighbors were

minority cases. The procedure would be

continued until the required number of

instances were gathered to be removed from

each cluster. To build the new training set,

each cluster's surviving examples and

minority samples would be combined. But

keep in mind that during the k-means

clustering stage, distance caching would be

used to expedite the under sampling

computation.

Figure 3. Under sampling Process

4. CONCLUSION

Journal of Applied Sciences, Information and Computing (JASIC) 2023

29

The hybrid cluster-based sampling

methodology was developed to improve the

overall performance of machine learning

algorithms while cutting down on computing

time, in contrast to other sampling strategies

that employ the k-means algorithm. Two

steps of the HCBST method are the

oversampling stage, when SMOTE is used to

create synthetic minority class instances

(Chawla, Bowyer, Hall, & Kegelmeyer,

2022). The idea of employing clustering to

find outliers in data is the foundation of the

second stage, known as under sampling

(Kaufman & Rousseeuw, 1990; Rocke &

Woodruff, 1996). Different sample

parameters for the under sampling and

oversampling processes could be used with

flexibility thanks to the design of HCBST.

5. REFERENCES

[1]Acuña E. & Rodríguez, C. (2015) “An

empirical study of the effect of outliers on the

misclassification error rate,” Transactions on

Knowledge and Data Engineering.

[2]Altman, N. S. (2019) “An introduction to

kernel and nearest-neighbor nonparametric

regression,” Am. Stat., doi: 10.1080/00031305.

10475879.

[3]Bauder, R. A., & Khoshgoftaar, T. M.

(2018) “Medicare fraud detection using

random forest with class imbalanced big

data,” in Proceedings - 2018 IEEE 19th

International Conference on Information

Reuse and Integration for Data Science, IRI

2018, 2018, doi: 10.1109/IRI.2018.00019.

.

[4]Chakkrit Tantithamthavorn, Ahmed E

Hassan, and Kenichi Matsumoto. The impact

of class rebalancing techniques on the

performance and interpretation of defect

prediction models. IEEE Transactions on

Software Engineering (TSE), 2018.

[5]Challagulla, F. B., Bastani, I. L. & Paul, R.

A. (2015) “Empirical Assessment of Machine

Learning based Software Defect Prediction

Techniques,” Proc. of the 10th IEEE

International Workshop on Object-Oriented

Real-Time Dependable Systems (WORDS’05).

[6]Chawla, N. V., Bowyer, K. W., Hall, L. O.

& Kegelmeyer, W. P. (2022)“SMOTE:

Synthetic minority over-sampling technique,”

J. Artif. Intell. Res., doi: 10.1613/jair.953.

[7]Chawla, N. V., Hall, L. O., Bowyer, K W. &

Kegelmeyer, W. P. (2022) “SMOTE: Synthetic

minority oversampling technique,” Journal of

Artificial Intelligence Research, vol. 16, pp. 321-

357.

 [8]Cover, T. M. & Hart, P. E. (1967) “Nearest

Neighbor Pattern Classification,” IEEE Trans. Inf.

Theory, doi: 10.1109/TIT.1053964.

[9]Demidova, L. & Klyueva, I. (2018) “Data

classification based on the hybrid versions of the

particle swarm optimization algorithm,” in 7th

Mediterranean Conference on Embedded

Computing, MECO 2018 - Including ECYPS 2018,

Proceedings, 2018, doi:

10.1109/MECO.2018.8406069.

[10]Drown, D. J., Khoshgoftaar, T. M. & Seliya, N.

(2019) “Evolutionary Sampling and Software

Quality Modeling of High-Assurance Systems,”

IEEE Transactions on Systems, Man, and

Cybernetics—Part A: Systems and Humans, Vol. 39,

No. 5.

[11]Drummond, C. & Holte, R. C. (2013) “C4.5,

class imbalance, and cost sensitivity: why under

sampling beats over-sampling,” Work. Learn. from

Imbalanced Datasets II, doi: 10.1.1.68.6858.

